Origin and evolution of MIR1444 genes in Salicaceae

نویسندگان

  • Meizhen Wang
  • Caili Li
  • Shanfa Lu
چکیده

miR1444s are functionally significant miRNAs targeting polyphenol oxidase (PPO) genes for cleavage. MIR1444 genes were reported only in Populus trichocarpa. Through the computational analysis of 215 RNA-seq data, four whole genome sequences of Salicaceae species and deep sequencing of six P. trichocarpa small RNA libraries, we investigated the origin and evolution history of MIR1444s. A total of 23 MIR1444s were identified. Populus and Idesia species contain two MIR1444 genes, while Salix includes only one. Populus and Idesia MIR1444b genes and Salix MIR1444s were phylogenetically separated from Populus and Idesia MIR1444a genes. Ptr-miR1444a and ptr-miR1444b showed sequence divergence. Compared with ptr-miR1444b, ptr-miR1444a started 2 nt upstream of precursor, resulting in differential regulation of PPO targets. Sequence alignments showed that MIR1444 genes exhibited extensive similarity to their PPO targets, the characteristics of MIRs originated from targets through an inverted gene duplication event. Genome sequence comparison showed that MIR1444 genes in Populus and Idesia were expanded through the Salicoid genome duplication event. A copy of MIR1444 gene was lost in Salix through DNA segment deletion during chromosome rearrangements. The results provide significant information for the origin of plant miRNAs and the mechanism of Salicaceae gene evolution and divergence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?

The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...

متن کامل

Phylogeny Reconstruction and Hybrid Analysis of Populus (Salicaceae) Based on Nucleotide Sequences of Multiple Single-Copy Nuclear Genes and Plastid Fragments

Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maxi...

متن کامل

Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genom...

متن کامل

Two Highly Similar Poplar Paleo-subgenomes Suggest an Autotetraploid Ancestor of Salicaceae Plants

As a model plant to study perennial trees in the Salicaceae family, the poplar (Populus trichocarpa) genome was sequenced, revealing recurrent paleo-polyploidizations during its evolution. A comparative and hierarchical alignment of its genome to a well-selected reference genome would help us better understand poplar's genome structure and gene family evolution. Here, by adopting the relatively...

متن کامل

Identification of 4CL Genes in Desert Poplars and Their Changes in Expression in Response to Salt Stress

4-Coumarate:CoA ligase (4CL) genes are critical for the biosynthesis of plant phenylpropanoids. Here we identified 20 4CL genes in the genomes of two desert poplars (Populus euphratica and P. pruinosa) and salt-sensitive congener (P. trichocarpa), but 12 in Salix suchowensis (Salix willow). Phylogenetic analyses clustered all Salicaceae 4CL genes into two clades, and one of them (corresponding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017